

PVI Case Studies: Including Methane

G. Todd Ririe; RET Group; La Palma, CA March 2014

What Homeowners and Companies Do NOT Want

Soil Gas Results-Evacuated Home

Site 1

Sample depth Methane (ppmv)

1. Subslab 0.5 ft 12

2. Subslab 3 ft 8,300

3. Outside 1ft 1,700

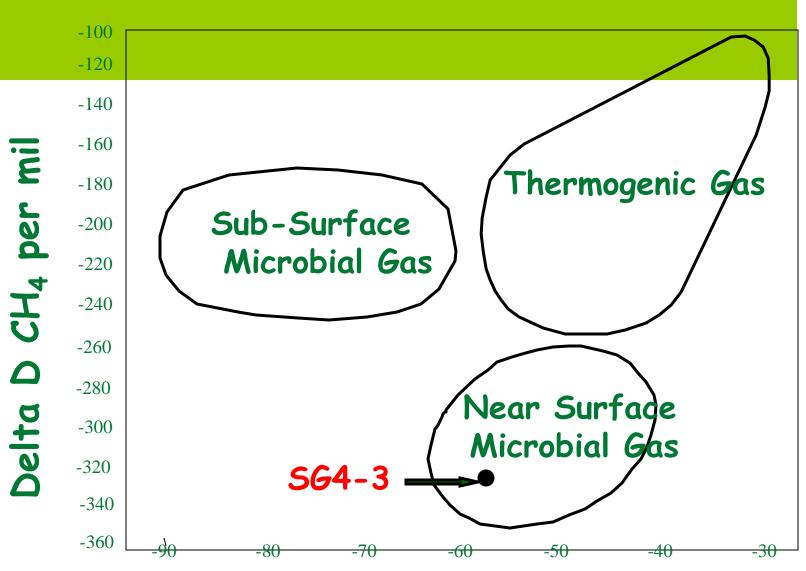
4. Outside 3ft 180,000

Site 2

Sample depth Methane (ppmv)

1. Subslab 0.5 ft <10

2. Subslab 3 ft 11,000

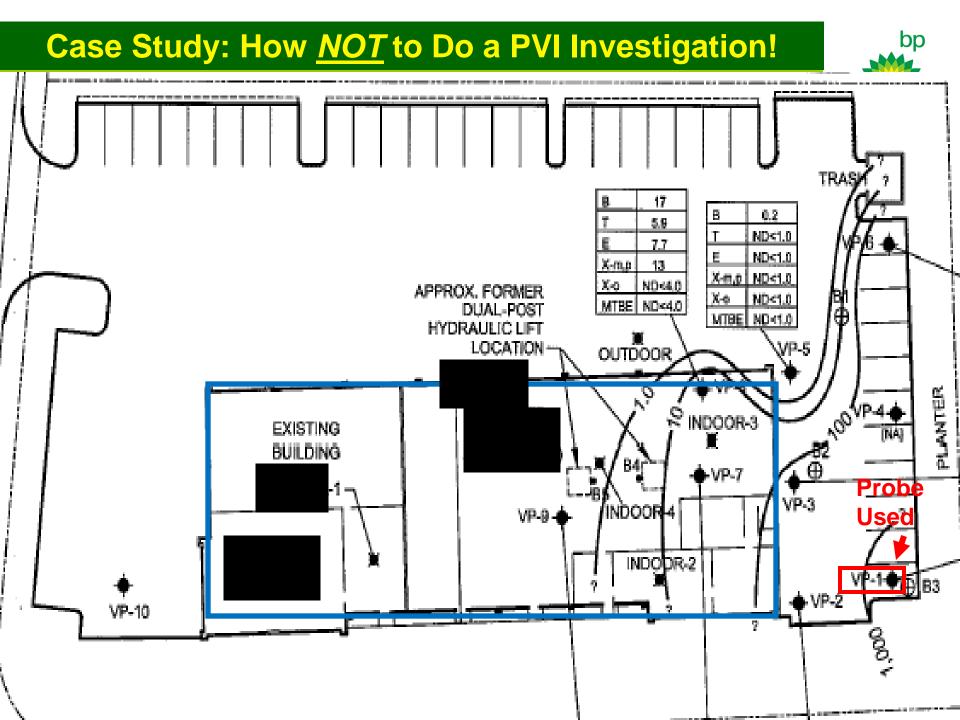

3. Outside 1ft 45

4. Outside 5ft 120,000

Isotech Gas Data: High CH₄ Sample

- $O_2 = 2.54\%$
- $CO_2 = 35.19\%$
- \cdot N₂ = 38.9%
- C1 = 22.9%
- C2 through C6+ = 0%
- Delta ¹³C1 = -57.18 per mil
- Delta DC1 = -328.4 per mil
- 14C pMC = 109%

Sources of gases as defined in Coleman (1994)



PVI Case Studies

Analyzing soil gas samples in late 1980's for oil and gas exploration. Ririe, 2013

TARLE 1

(ug/L)

ND<1.0

ND<4.0

ND<100

ND<100

ND<100

(ug/L)

ND<1.0

ND<4.0

110

110

ND<100

(ug/)

ND<

 $ND^{<\prime}$

ND<

ND<1

ND<

TADLE						
SOIL GAS SURVEY	VAPOR SAMPLE	ANALYTICAL RESUI				

SUIL GAS SURVEY	VAPOR SAMPLE AMALY	IICAL KESU
į.		
d.		

	VFH	Benzene	Toluene	Ethylbenzene	m.n-Xvlenes	o-Xvle
		i i				

(ug/L)

0.4

4.1

1200

400

200

(ug/L)

ND<200

620

40,000

13,000

7,800

30-Aug-07

30-Aug-07

30-Aug-07

30-Aug-07

30-Aug-07

VP-1-5

VP-1-15

VP-1-25, 1PV

VP-1-25, 3PV

VP-1-25, 7PV

 Sample Date	VEH	Renzene	Toluene	Ethylbenzene	m.n-Xylenes	o-Xvl

(ug/L)

0.1>DM

ND<4.0

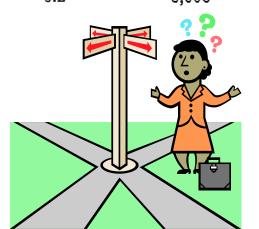
ND<100

ND<100

ND<100

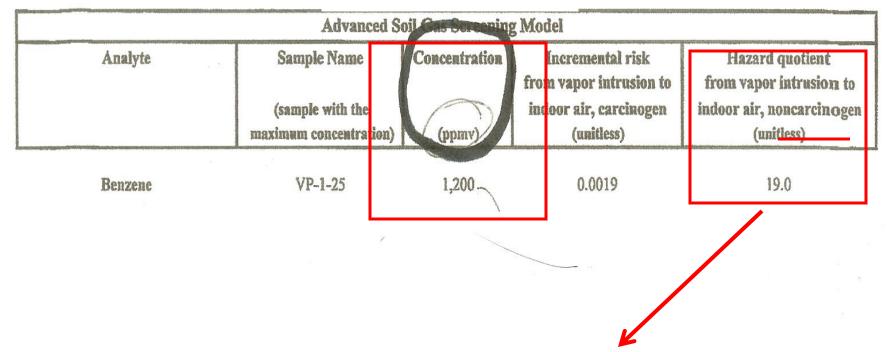
BOIL GRO BOXYET	TALORDANII DE AMADI HOAD	WOU.
,		
4		

 Table 5
 PRELIMIN


PRELIMINARY SCREENING EVALUATIONS

Preliminary Screening Evaluations for Soil Gas

Analyte	Sample Name (sample with the	Concentration	Default Attenuation Factor	Indoor Air Concentration	OEHHA Chronic Inhalation RELs
	maximum concentration)	(µg/m³)		(μg/m³)	(μg/m³)
Benzene	VP-1-25	1,200	0.001	1.20	60
Toluene	VP-2-25	420	0.001	0.42	300
Ethylbenzene	VP-6-25	30	0.001	0.03	2,000
Xylenes	VP-1-25	110	0.001	0.1	700
MTBE	VP-1-25	170	0.001	0.2	8,000


1200 ug/L = 1,200,000 ug/m3

CA-EPA 1 e-5 allowable benzene value: 4.2 ug/m3

Laboratory analytical results for the vapor samples collected during the soil gas survey indicate that petroleum hydrocarbon vapors are present in the subsurface. The preliminary data was modeled using the advanced version of the Johnson and Ettinger Model (J&E Model). The J&E Model is a fate and transport model that simulates the transport of soil vapors from the subsurface into indoor air. Although the measured vapor concentrations decreased with increasing distance from the vapor source (impacted groundwater), and results for the vapor samples collected from five feet below ground surface (bgs) in each of the vapor probes revealed little to no hydrocarbon vapor concentrations (Table 1), the results of the J&E Model indicated that there was a potential risk of benzene vapor intrusion into indoor air from the concentrations detected at 25 feet bgs in the vapor probes. Therefore, in order to evaluate the potential risk of benzene vapor intrusion into the indoor air of the vacant building at the site, the collection of indoor air samples was proposed. On September 12 and 13, 2007, collected indoor

energing the sevent to the feet of the sevent to the destruction of the free free treatment of the feet of the

Benzene is a carcinogen!

Benzene was detected in vapor samples Indoor-1, Indoor-2, and Indoor-3 at concentrations of 0.29, 0.29, and 0.32 ppmv, respectively. Toluene and xylenes were detected in all indoor and outdoor vapor samples. Toluene concentrations ranged from 1.4 to 2.0 ppmv, detected in Indoor-1. Xylenes concentrations ranged from 0.62 to 0.94 ppmv, detected in Indoor-1. Ethylbenzene was detected in Indoor-1 and Indoor-2 at concentrations of 0.29 and 0.22 ppmv, repectively. Indoor air sample analytical results are presented in Table 9.

TABLE 9
INDOOR AIR SAMPLE ANALYTICAL RESULTS

Sample Name	Sample Date	VFH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	ETBE	1
Indoor-1	12-Sep-07	ND<1,700	0.29	2.0	0.29	0.94	ND<1.0	ND<1.0	ND<1.0	N
Indoor-2	12-Sep-07	ND<2,000	0.29	1.6	0.22	0.83	ND<1.0	ND<1.0	ND<1.0	N
Indoor-3	12-Sep-07	ND<1,900	0.32	1.7	ND<0.30	0.84	ND<1.0	ND<1.0	ND<1.0	N
Indoor-4	12-Sep-07	ND<2,100	ND<0.30	1.5	ND<0.30	0.62	ND<1.0	ND<1.0	ND<1.0	N
Outdoor-1	12-Sep-07	ND<1,800	ND<0.30	1.4	ND<0.30	0.63	ND<1.0	ND<1.0	ND<1.0	N

NOTES:

VFH = Volatile Fuel Hydrocarbons (C4 - C12)

MTBE = Methyl Tertiary Butyl Ether

DIPE = Di-Isopropyl Ether

ETBE = Ethyl Tertiary Butyl Ether

TAME = Tertiary Amyl Methyl Ether

TBA = Tertiary butanol

All and the state of the state

All concentrations are in parts per billion by volume (ppbv)

Thing malysis by method EPA 2 TO 3, robitiles unalysis by method EPA-2 TO-15

Italics indicates that concentrations are estimated values detected at a level less than the reporting limit and greateer than or equal to the MDI

CA allowed Level for

Benzene:

~1 ppbv

Benzene was detected in vapor samples Indoor-1, Indoor-2, and Indoor-3 at concentrations of 0.29, 0.29, and 0.32 ppmv, respectively. Toluene and xylenes were detected in all indoor and outdoor vapor samples. Toluene concentrations ranged from 1.4 to 2.0 ppmv, detected in Indoor-1. Xylenes concentrations ranged from 0.62 to 0.94 ppmv, detected in Indoor-1. Ethylbenzene was detected in Indoor-1 and Indoor-2 at concentrations of 0.29 and 0.22 ppmv, repectively. Indoor air sample analytical results are presented in Table 9.

air quality of the investigation building. However, the DTSC recommends a minimum of two indoor air sampling events before making a final risk determination for a site. One indoor air sampling event cannot be reasonably representative of continuous long-term exposure within a building. Multiple sampling events should be conducted to characterize exposure over the long term (DTSC, 2004). In addition,

Based on the results for the ambient air sample (outdoor sample), there are outside influences on indoor

PVI Assestment Needed-: Former Refinery, Free Product, Odors in Building

1. Odors reported in new bldg 2. Free product on site

3. Sheening present

4. Sampling VI pathways

5. Sampling room with odors

6. Avoided This!

Gasoline Pipeline Spill in Neighborhood

Field Lab: Basement: 1165; 1st Floor: 122 ppbv/ Cannister: 1st Floor: 470 ppbv

Other homes: at or below ambient (6.4 ppbv measured)

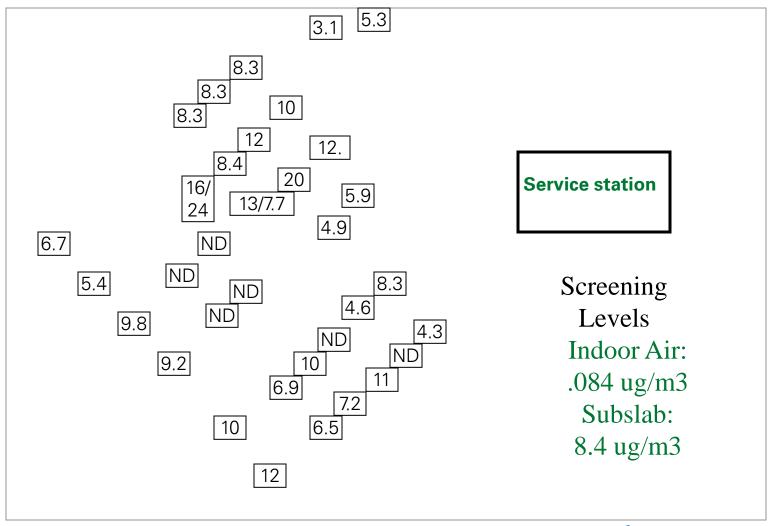
Dune sands

Look
Who showed
up!

Retail Site in Residential Area

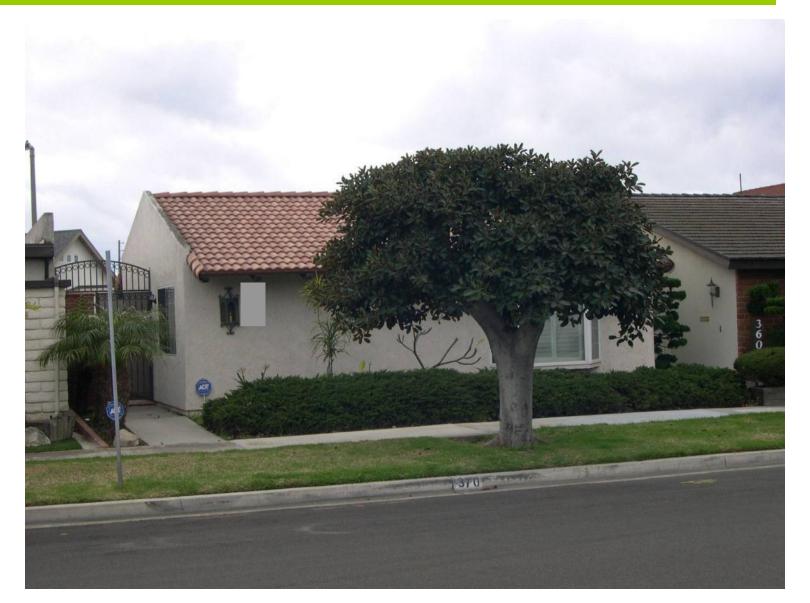
Soil Gas (18 inch depth) assessment data

Service Station

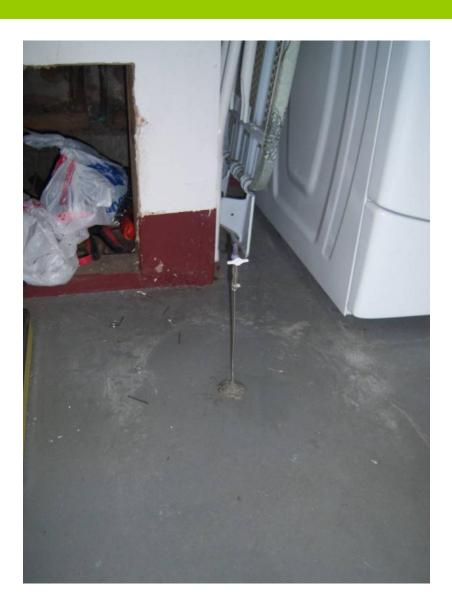

Soil Gas Sample Locations (2 ft and 4 ft)

Subslab Soil Gas Data (ug/m3 benzene)

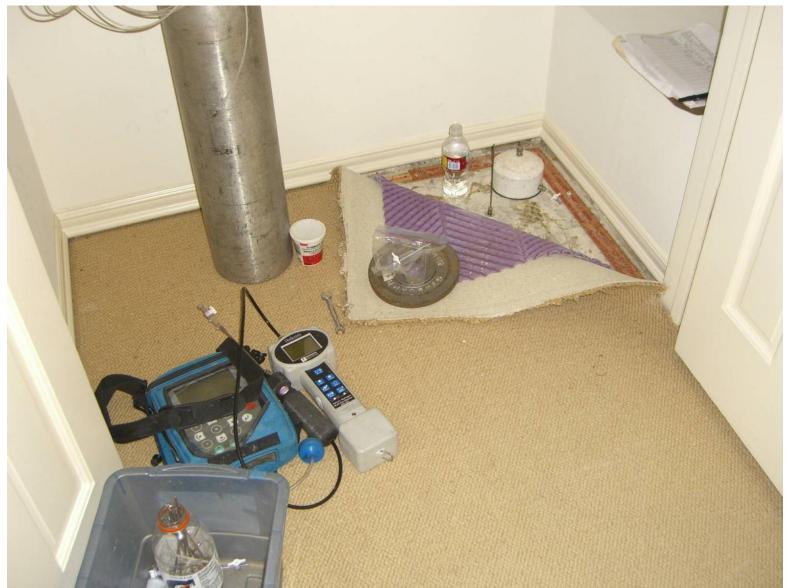
0 100 ft


Conclusions: Subslab Soil Gas Sampling

- The results provided statistical evidence that benzene concentrations inside the study area and outside the study area are not significantly different, and that benzene concentrations found in garage samples are higher than those in non-garage samples (primarily collected from living spaces)
- The resulting benzene background threshold values range from $12 \mu g/m^3$ (for non-garage samples outside the study area) to $15 \mu g/m^3$ (for all benzene data). These benzene concentrations correspond to cancer risk estimates ranging from 1×10^{-6} to 2×10^{-6} , respectively, thus providing statistical evidence that background benzene levels in sub-slab are at or above the OCHCA risk management range level of 1×10^{-6}


Typical House Subslab Investigation

Subslab Sample- Garage



Note bentonite seal and syringe sample

Subslab Sample-Interior of Home

BBQ Grill With Natural Gas Connection

Subslab Sample Results: Home with Leaking Natural Gas Pipeline

Analyte	BBQ	Garage	Patio	Garage #2	Closet
methane	40%	90%	100%	nd (0.1%)	nd (0.1%
	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
n-hexane	1700	2000	10000	nd (15)	nd (15)
cy-hexane	750	5500	12000	nd (20)	21
n-heptane	460	710	3100	nd (50)	nd (50)
benzene	270	340	<u> 1900</u>	6.5	7.9
toluene	150	110	120	44	62
xylenes	40	105	177	113	33
tri-methyl benzene	3	85	25	110	nd (10)
tri-methyl pentane	nd (200)	300	nd (200)	nd (20)	nd (20)

The Final Solution?

Excavation within cell

Clean backfill

SVE Prior to Dig

SVE Still Running (1999 to Present)