

VI Issues: Lessons Learned-Including Methane

Consultant Issues:

- Using RBSLs for soil gas for sub-slab or vice-versa.
- Using screening levels as clean-up criteria
- Calculating wrong screening levels (wrong alpha or model values)
- > Using non-cancer screening levels for carcinogens
- Using wrong exposure times
- Proposing indoor air sampling before evaluating if the VI pathway is complete
- > Incorrect construction of soil gas sampling points

Unit Confusion:

- Assuming ug/L equivalent to ppbv
- > Assuming ug/m3 equivalent to ppbv
- Not knowing how to go from ug/m3 to ug/L

"Top Ten" List of VI Issues Encountered

• Reviewer/Agency Issues:

- > Requiring soil gas data be acquired even though soil and groundwater is clean enough to screen out site
- > Requiring all soil gas samples to be collected in Summa canisters and analyzed by TO-15 when TO-14, 8260 or 8021 ok.
- Using guidance for petroleum hydrocarbon issue that was written for chlorinated hydrocarbons.
- > Setting inconsistent clean up levels
- > Not permitting SVE systems to be shut off prior to collecting soil gas samples
- > Unfamiliar with science/reason for setting reasonable screening out criteria
- > Requiring deep soil gas samples

Work Plan Issues:

- > Work plans submitted for VI work not needed
- > Too many samples recommended for what is needed
- > Not specifying collection of samples in upper part of vadose zone (e.g., 5' bgs) to demonstrate bioattenuation
- > Analyzing compounds that were never used at the site.
- Not analyzing for fixed air gases
- Not using correct analytical method to achieve needed detection limits

Soil Gas Probe Installation Issues:

- Using wrong tubing type
- > Pinching off tubes incorrect completion
- Not collecting an equipment blank

Consultant Field Sampling Issues:

- Not opening Summa canisters or Tedlar bags
- > No experience with swagelok connectors
- > Applying too much liquid tracer
- > Returning Summa canisters with 0 pressure
- Lack of attention to chain of custody details

Example of Chain Custody Document Goof

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

1077-3530 Section B Section C Page: of Required Client Information: Required Project Information; Invoice Information Program UST Superfund Emissions Address Voluntary Clean Up Dry Clean RCRA Other Sampling by State Report Level II. Section D Required Client Information COLLECTED MEDIA Teclar Bag AIR SAMPLE ID Summa Sample IDs MUST BE UNIQUE Flow MEDIA CODE Low Volume Puff LVP Control Number TEM # High Yoluma Puff HVP Number TIME DATE Pace Lab ID Living Room 0068 10-19-11 8:30 10-20-11 8:30 0115 10-19-11 8:32 10-20-11 830 -235 0.0 0 9 3 3 002 Exterior 6 10-14-11 8:30 16-20-1 8:30 -24,000 0263 W3 OSSice \$ 10-14-11 8:30 10-241 8:30 -250 00 0 8 2 0 Comments: SAMPLE CONDITIONS 24 of 25 2453 X XX. Š SAMPLER NAME AND SIGNATURE

0 - 1 0 - 1 2 0 - 1 0 3 : 1 0 Reported: 04/15/2011 15.12

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

05298

Bromoethene

Bromomethane

1,3-Butadiene

n-Butylbenzene

sec-Butylbenzene

Carbon Disulfide

Chlorobenzene

Chloroethane

Chloromethane

Chloroform

tert-Butylbenzene

Carbon Tetrachloride

Chlorodifluoromethane

tert-Butyl Alcohol

Bromoform

2-Butanone

	11 15:13	Results for Office Indoor Air					
CAT No. Analysis Name		CAS Number	As Received Final Result	MDL	As Rece Final R		
Volatiles in Air	ASTM D194	6	%	%			
00034 Oxygen		124-38-9 7782-44-7	< 0.060 7.5	0.060 0.060	O_2		
Volatiles in Air 11687 Butane 07056 Methane	EPA 18 mod	dified 106-97-8 74-82-8	mg/m3 < 3.6 85	mg/m3 3.6 3.9	ppm(v) < 1.5 130		
Volatiles in Air 05298 Acetone 05298 Acetonitrile 05298 Acrolein 05298 Acrylonitrile 05298 Benzene 05298 Bromobenzene	EPA TO-15	67-64-1 75-05-8 107-02-8 107-13-1 71-43-2 108-86-1	ug/m3 68 22 J < 11 < 11 < 6.4 < 13	ug/m3 12 8.4 11 11 6.4 13	<pre>ppb(v) 29 13 < 5.0 < 5.0 < 2.0 < 2.0</pre>		

593-60-2

75-25-2

74-83-9

78-93-3

75-65-0

104-51-8

135-98-8

98-06-6

75-15-0

56-23-5

75-45-6

75-00-3

67-66-3

74-87-3

108-90-7

106-99-0

< 22

< 21

< 7.8

< 11

< 15

< 15

< 11

< 11

< 11

< 13

< 9.2

< 7.1

< 5.3

< 9.8

< 6.2

22

21

7.8

11

15

15

11

11

11

13

9.2

7.1

5.3

9.8

6.2

< 2.0

< 5.0

< 2.0

< 2.0

< 5.0

< 5.0

< 5.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

Location	Near DWSS	to VP-1	VP-4	fence post	corner	garage	DWSS
Summa size (litres)	6	6	6	6	6	6	6
Summa ID	832/4505	109	535/1291	822/4548	198	114	107
Flow Controller ID	7329537	7336786	7301041	7252153	7234843	7336758	7336759
Summa Flow regulator setting (time)	24hr intake						
			1000				
Total single implant volume (litres)	0.191	NA	NA	NA	NA	NA	NA
Purge Time Start	11:12	NA	NA	NA	NA	NA	NA
Purge Time Stop	11:17	NA	NA	NA	NA	NA	NA
Total purge time (mins.)	5	NA	NA	NA	NA	NA	NA
Volume purged (litres)	1	NA	NA	NA	NA	NA	NA
Tracer Gas Reading - Initial (%)	0.6400%	NA	NA	NA	NA	NA	NA
Pressure gauge pre-sample (inches Hg)	-29	>-30	-30	>-30	-29	>-30	-28.5
Sample start time	13:57	14:34	14:26	14:22	14:10	13:55	13:56
Sample end time	10:12	12:58	11:41	11:16	11:55	10:40	10:15
Elapsed sample time (mins.)	1215	1344	1275	1254	1305	1245	1219
Pressure gauge post-sample (inches Hg)	-12	-10	-12	-21	-9	-21	-11
Tracer gas reading - Final	0.5000%	IVA	IVA	NA	NA	NA	NA I
PID reading (ppm)	0	0	0	0	0	0	0
Note Negative Vacu	ıums:	The c	ans or				

- Probe installation: ground disturbance issues mean no direct push methods can be used
- Avoid air knife
- Sampling open bore holes

- Smaller samples are better; including Summa canisters
- Flow rate can easily be monitored using hand held syringe
- Tedlar bags have maximum holding time of about 3 days for benzene and 2 days for TEX

Methane: Potential Safety Hazard

- Colorless-odorless gas: CH4
- Ubiquitous
- Value in Air: 1.8 ppmv
- Lower Explosive Limit: 50,000 ppmv
- Upper Explosive Limit: 150,000 ppmv
- Main component of natural gas
- Most abundant organic compound on Earth
- Methanogenesis: $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$
- Fermentation: Biogas from biodegradable organic matter: Landfills
- Global Warming: Current Biology publication suggests flatulence from dinosaurs may have warmed the Earth!

Methane: Site Data Required to Assess Hazard and Determine if Action is Needed

- Source concentration
- Volume
- Pressure
- Transport/Preferential Pathways
- Dilution
- Bio-attenuation

The presence of methane in soil gas does not mean there is a hazard

Good Example of Unexpected Source of Methane/Benzene in Residential Area

Analyte	BBQ	Garage	Patio	Garage #2	Closet
methane	40%	90%	100%	nd (0.1%)	nd (0.1%
				, ,	•
	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
n-hexane	1700	2000	10000	nd (15)	nd (15)
cy-hexane	750	5500	12000	nd (20)	21
n-heptane	460	710	3100	nd (50)	nd (50)
benzene	270	340	1900	6.5	7.9
toluene	150	110	120	44	62
xylenes	40	105	177	113	33
tri-methyl benzene	3	85	25	110	nd (10)
tri-methyl pentane	nd (200)	300	nd (200)	nd (20)	nd (20)

Homeowner had to be reminded twice to call gas company Regulators ignored the issue

What Homeowners and Companies Do NOT Want

Soil Gas Sampling Results

Site 1

Sample depth Methane (ppmv)

- 1. Subslab 0.5 ft 12
- 2. Subslab 3 ft 8,300
- 3. Outside 1ft 1,700
- 4. Outside 3ft 180,000

Site 2

Methane (ppmv)

Sample depth

- 1. Subslab 0.5 ft <10
- 2. Subslab 3 ft 11,000
- 3. Outside 1ft 45
- 4. Outside 5ft 120,000

Isotech Gas Data: High CH4 Sample

- $O_2 = 2.54\%$
- $CO_2 = 35.19\%$
- \cdot N₂ = 38.9%
- C1 = 22.9%
- C2 through C6+ = 0%
- Delta ¹³C1 = -57.18 per mil
- Delta DC1 = -328.4 per mil
- 14C pMC = 109%

Sources of gases as defined in Coleman (1994)

Sources of Methane in the Subsurface

- Methane from biodegradation of petroleum is characterized by:
 - Lack of significant concentrations of ethane and propane
 - CO2 / methane ratios between 0.3 and 0.6
 - Relationship between carbon isotope ratio of CO2 and
 - methane concentration
 - C14 age > 50,000 years old

Thermogenic methane can be distinguished by molecular composition

 Geologic considerations and stable isotope ratios may be needed

