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Small-volume releases of gasoline may be liquid or 
vapor and occur as a result of routine fueling 
operations, equipment repair, or leaky joints and 
connections in UST systems.  In the case of a liquid 
release, the volume is not of sufficient magnitude for 
the released product to contact groundwater. Rather, 
individual constituents of the gasoline migrate to 
groundwater by diffusion and advection.  Resulting 
effects on groundwater are a function of the 
magnitude (volume and rate) of product released, its 
composition, the physiochemical properties of the 
constituents that compose the released gasoline, and 
the prevailing hydrogeologic conditions of the vadose 
zone into which the product is released. sess potential human 
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The magnitude, type (liquid or vapor), and 
occurrence of small-volume releases are poorly 
understood. To date, the only investigation 
undertaken to address these issues was tracer study of 
recently upgraded UST systems in California.  The 
study found detectable levels of tracer in 61% of 182 
systems tested, all but one release was believed to be 
vapor related [Young and Golding, 2002]. Virtually 
all of the small-volume releases were estimated to 
occur at rates < 0.04 gal d-1 (liquid equivalent), with a 
maximum rate of 0.4 gal d-1; rates well below the 
current liquid leak detection threshold of 2.4 gal d-1 
(0.1 gal hr-1). The rate estimates, along with the 
actual type and frequency of occurrence remain in 
doubt, however, because of uncertainty in mass-
balance calculations and the lack of field validation.  

 



What approach was used in this study? 
Benzene transport in the vadose zone was simulated 
using the computer code R-UNSAT, developed and 
documented by the U.S. Geological Survey [Lahvis 
and Baehr, 1997]. The transport model accounts for 
diffusion, groundwater infiltration, adsorption, and 
biodegradation processes, variable soil-moisture 
content, and equilibrium partitioning among the 
solid, aqueous, and gaseous phases. As shown in 
Figure 1, the model was applied to simulate steady-
state transport in one (Scenario 1) and two (Scenario 
2) dimensions. Scenario 1 represents a case where 
vapor migration is confined between a capped surface 
cover (e.g., asphalt pavement) and the water table, 
both impervious to vapor transport. The source is 
vertically distributed across the entire thickness of the 
vadose zone, from land surface to the water table. 
Scenario 2 represents a case where the source is 
positioned at a finite depth (366 cm) below land 
surface, commensurate with the default basement 
mixing height defined in Environmental Protection 
Agency [2002]. The far-lateral and water table 
boundaries were established at distances defined 
from initial model simulations that were designed to 
minimize effects on vapor transport. For assessing 
risk, Scenario 1 represents the more conservative 
case; Scenario 2, represents the more realistic case. 
Model assumptions for both scenarios include:  

• a small-volume release rate of 120 g d-1 (0.04 gal 
d-1 liquid gasoline equivalent) assumed to be 
representative of the upper-bound rate for the 
vast majority of small-volume releases occurring 
at UST sites [Young and Golding, 2002]; 

• a gasoline source containing 10 percent by 
volume ethanol and 1.4 percent by volume 
benzene, assumed to be consistent with the 
composition reported in California 
Environmental Protection Agency [1988]; 

• a homogeneous vadose zone consisting of sand 
at a residual moisture saturation of 0.053 (a 
default value recommended by the 
Environmental Protection Agency [2002]); 
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Figure 1. Model geometry and boundary 
conditions used in model simulations. The 
buildings shown in Figure 1 are used for reference 
only and were not part of the model simulation.  

• variable biodegradation rates (half-lives) for 
benzene ranging from 0.69 - 69,000 days; and, 

• no groundwater infiltration.  

In Scenario 2, the lateral offset distance was defined 
as the minimum distance necessary to achieve a 
target concentration for benzene in soil gas of 3.1µg 
m-3 at the depth of the basement foundation (366 cm). 
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What were the results? 
The potential for exposure to vapor intrusion varied 
depending on the model geometry (i.e. Scenario 1 or 
Scenario 2) and the biodegradation rate (see Figure 
2). Assuming benzene biodegrades at rates greater 
than 0.05 d-1 (14 d half-life) consistent with aerobic 
biodegradation, the distance over which there is a 
potential for exposure to vapor intrusion ranges from 
approximately 20 (Scenario 2) to 30 ft. (Scenario 1). 
Assuming a conservative biodegradation rate of 
0.005 d-1 (140 d half-life), consistent with anaerobic 
biodegradation, the distance increases to 
approximately 55 ft. (Scenario 2) to 100 ft. (Scenario 
1). By comparison, if the benzene biodegradation rate 
is linked to oxygen (O2) availability (e.g., dual-
Monod kinetics), the lateral distance reduces to less 
than 10 ft. in sand (see Figure 2) [Lahvis, 2003]. 
Moreover, this result implies that anaerobic 
conditions should only occur within 10 ft. of a small 
volume release source. Given that residences would 
typically be located well beyond this distance at UST 
sites, small-volume releases of oxygenated gasoline 
(specifically) are not expected to pose a risk for vapor 
intrusion. Potential risk for vapor intrusion may, 
however, exist within a 100 ft. radius of the release, if 
O2 is limited, say for example, by the presence of an 
additional petroleum source(s), unrelated to the 
small-volume release.  

What key parameters affect transport of 
benzene transport in the vadose zone? 
Benzene will tend to migrate in the vadose zone in 
the gaseous phase rather than the aqueous phase, 
unless vapor diffusion is severely limited, as can 
occur in fine-grained soils. Consequently, benzene 
transport is typically more sensitive to factors that 
affect vapor diffusion (e.g., soil type), than to factors 
that affect aqueous-phase transport (e.g,, groundwater 
infiltration). Benzene transport can also be affected 
by biodegradation and, in turn, O2 availability. Under 
conditions where O2 is readily available, the vapor 
intrusion pathway will be limited. The potential for 
vapor transport to indoor air would increase, 
however, if O2 is depleted by the presence of sinks 
unrelated to the small-volume release.  In summary, 
the key factors to consider in evaluating the potential 
risk to vapor intrusion are distance between the 
source and receptor, and O2 availability.  
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