

REPORTING AND CLASSIFICATION OF PERSONAL H₂S ALARM INCIDENTS

Prioritizing Personal H₂S Alarm Incidents Using a Standard Risk Assessment Process

Jody Kliebert, MSPH Industrial Hygienist, MOTIVA Enterprises, L.L.C. – Convent Refinery

AGENDA

Why Report and Risk Rank Personal H₂S Alarms? Reporting and Risk Ranking Process Data Analysis Unexpected Discoveries and Benefits Recommendations for Implementation

WHY REPORT PERSONAL H₂S ALARMS?

Additional data to identify H₂S Hazards

Required use of monitors = entire population of all possible exposures is measured - Capture This Data

See a larger percentage of H₂S related incidents

- If no required reporting, do not see near misses only see incidents with consequences
- 93.5% of H_2S alarms were near misses/potential incidents
- Identifies potentially more high risk incidents

WHY RISK RANK PERSONAL H₂S ALARM INCIDENTS?

Prioritization

- Focus management's attention on hazard sources
- Focus resources based on risk
- Triggers fact gathering
- Determines level of incident investigation

REPORTING AND RISK RANKING PROCESS

 Uses existing incident reporting, risk ranking and investigation processes

REPORT

Policy requires all personal H₂S and CO alarms be reported
 First Report of Incident entered by a supervisor

INDSOT FDM® Cuito	userid: JODY.KLIEBERT	Logout×
IMPAGIERM Suile	Home Main Menu v Settings Help	
	First Report of Incident	
Responsible Dept/Unit 🎱 :*		4
Short Description Δ : *		More 🕨
Responsible Supervisor: *	<u>s</u>	
Where did the incident occur?		
Location:	[NONE] -	
Specific Location:		
Date Occurred:		
(mm/dd/yyyy) *		
(mm/dd/yyyy)*	04 • / 27 • / 2011 • 😥 • 05 • : 57 • PM •	
Enter a full description of the Event		
Event Description \Lambda :*	A	
	v	More 🕨
	A	
Immediate Corrective Actions Taken:		
		More >
Select an Event Type and all Sub Types that appl	4	
Event Type: * [NONE]	•	
Near Miss (Incident without Consequences)		

FACT GATHERING

- First Report only includes the basic elements
- Additional information required for risk ranking:
 - Chemical involved
 - Source of chemical involved
 - Volume of chemical involved
 - Concentration of H₂S in the chemical involved
 - Concentration of H₂S measured by personal monitor
 - Full-shift and short term exposures, if available
 - Task performed at time of the alarm
- Conducted by site IH or H&S Professional

RISK RANKING PROCESS

- Focused specifically to Personal H₂S alarms
- Standardized for U.S. Manufacturing Sites
- Step-by step method to classify H₂S alarms: low, medium or high
- Considers:
 - Actual health effects
 - Respiratory protection
 - Volume of chemical involved
 - Concentration of H₂S in chemical
 - Risk ranking using the Shell Risk Assessment Matrix (RAM)
- Conducted by site IH, incident management coordinator or lead investigator

Entering and Classifying H2S Alarm Incidents in FIM

DATA ANALYSIS – ALL PERSONAL ALARM INCIDENTS

114 personal alarm incidents 12/27/2009 - 04/25/2011

RISK RANKING RESULTS

CAUSES OF H₂S ALARM INCIDENTS

77 personal H₂S alarm incidents 12/27/2009 - 04/25/2011

- Leading causes:
 - **Leaks 29%**
 - Line breaks / Opening equipment – 23%
 - Lab analysis 12%
 - Draining equipment 13%
 - Process sampling 13%

CAUSES OF H₂S ALARM INCIDENTS OVER TIME

77 personal H₂S alarm incidents 12/27/2009 – 04/25/2011

Copyright of COMPANY NAME

UNEXPECTED DISCOVERIES AND BENEFITS

- Reporting all types of personal alarms H₂S, CO, LEL
- Alarms triggered by chemicals other than that intended
 - H₂S alarms: 7% H₂
 - CO alarms: 65% H₂, 3% hydrocarbon
- Improved environmental responsibility
 - Incidents are reviewed and risk ranked by environmental engineers
 - Detect and repair leaks not found by LDAR program
- Improved safety and reliability
 - Incidents are reviewed and risk ranked by reliability engineers
 - Detect and repair H₂ and hydrocarbon leaks

RECOMMENDATIONS FOR IMPLEMENTATION

- Require reporting of personal alarms don't just recommend
- Provide written guidance and training on:
 - Information required for initial report
 - Entry of initial report
 - Documenting closing the incident loop: alarm, report, control, verify
- Minimize number of individuals conducting risk ranking
- Configure incident database for accurate data retrieval
 Add incident flag for "Personal gas monitor alarm"
- Communicate benefits of reporting to site personnel repeatedly
- Use interim controls other than SARs where possible
- Standardize personal gas monitors

BACKGROUND

MOTIVA Enterprises, L.L.C. – Convent Refinery:

- SE Louisiana
- 50/50 JV Shell Group and Saudi Refining Inc.
- Constructed: 1964
- Throughput: 245,000 bpd
- Crude slate: predominately sour crude
- Products: Fuel oil and lighter

HISTORY OF PROCESS

Path to standardized reporting and risk ranking:

- 1998, Feb. H₂S related fatality
- 1998 Required personal H₂S monitors for company personnel
- 2007, Aug. Required personal H₂S monitors for anyone entering the refinery
- 2009, Dec. Required personal CO monitors in some areas
- 2009, Dec. Required reporting of personal H₂S and CO alarms
- 2010, Mar. H₂S Team, Goal: Zero personal H₂S Alarm Incidents
- 2010, Apr. H₂S Alarm Incident Risk Ranking Pilot

CONTROLS - LEAKS

- Most leaks were unknown prior to personal alarm incident
- LDAR program, PEI program and operator rounds play a large role in control
- Added:
 - Personal alarm reporting process itself repair identified leaks

CONTROLS – LINE BREAKS / OPENING EQUIPMENT

- Equipment draining and decontamination procedures, permit to work process and energy isolation play a large role in control
- Zero Energy Isolation reduced splash/spray incidents

Added:

- Decontamination of Process Equipment Chemical Exposure Control Policy
- Line Break Policy
- Full-time respirator technician

CONTROLS – LAB ANALYSIS

 Lab ventilation systems, analytical procedures, lab design, sample cooling and limiting chemical volume play a large role in control

Added:

- Move problem analysis into lab hoods
- Vent instruments to ventilation systems
- High flowrate fans for outside operations
- Increase emphasis on process sample labeling

CONTROLS – DRAINING EQUIPMENT

- Equipment draining and decontamination procedures, closed drain lines and hoses, closed decontamination headers (T/A) and decontamination stream analysis (T/A) play a large role in control
- Added:
 - Additional closed drain lines
 - Improve drain/vent to flare

CONTROLS – PROCESS SAMPLING

 Closed-loop sample stations, eductor box sample stations and process sampling procedures play a large role in control

Added:

- Hierarchy of controls specific to process sampling
- Discontinue/minimize sampling
- Additional closed-loop sample stations
- Microwave gauges on tanks
- Mini SAR carts

NEXT STEPS

- Automatic download of personal monitor data see all alarms
- Increase emphasis on reporting requirements
 - Communicate data analysis and benefits to site personnel
 - Communicate unreported alarms to management
- Configure hand-held instruments with H₂ null CO sensors and H₂ sensors to investigate H₂ and CO sources
- Adjust H₂S alarm set points: 5 ppm low, 10 ppm high
- Required reporting and classification of personal H₂S alarms at Shell Group U.S. Manufacturing sites