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oxygenated gasoline containing MTBE. EtOH and 
MTBE, however, may not be the only oxygenates of 
environmental concern in reformulated gasoline. For 
example, tert-butyl alcohol (TBA) could be present in 
EtOH-blended gasoline as a result of processes used 
to manufacture EtOH for use in motor fuel or TBA 
could be produced in the vadose zone by 
biotransformation of MTBE, a potential impurity of 
EtOH-blended gasoline.  

The aim of this study was to predict the maximum 
concentration of TBA that could occur in 
groundwater associated with a small-volume release 
of EtOH-blended gasoline in the vadose zone. 
Conservative source and transport assumptions were 
applied. The approach used in this study is similar to 
that applied in previous modeling studies of Lahvis 
and Rehmann [2000] and Lahvis [2003].  
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How is TBA associated with EtOH-
blended gasoline? 
TBA may be present in EtOH-blended gasoline as a 
result of processes used to manufacture EtOH for use 
in motor fuel. For example, TBA may be used as a 
denaturant in pure-grade EtOH [Linder, 2000], or 
could be present in pure-grade EtOH as a byproduct 
of alcohol fermentation [Tibelius, 1996]. According 
to current regulations, EtOH-blended gasoline could 
also contain small amounts of MTBE [California 
Environmental Protection Agency, 2003], which 
could be potentially biodegraded to TBA in the 
vadose zone. EtOH-blended gasoline is currently 
allowed to contain up to 0.3 percent by volume 
MTBE. Prior to July 2004, the allowable fraction in 
reformulated gasoline (RFG) sold or distributed in 
California was 0.6 percent by volume. In December 
2005, 0.15 percent by volume MTBE is the allowable 
fraction. These percentages are well below the 11 
percent by volume MTBE that RFG contained before 
the 2003 phaseout.  

What constitutes a small-volume release 
of gasoline? 

Small-volume releases of gasoline may be liquid or 
vapor related, and can result from routine fueling 
operations, equipment repair, or leaky joints and 
connections in UST systems.  The magnitude, type 
(liquid or vapor), and occurrence of small-volume 
releases are poorly understood. To date, the only 
investigation undertaken to address small-volume 
releases was tracer study of recently upgraded UST 
systems in California.  The study found detectable 
levels of tracer in 61% of 182 systems tested, all but 
one release was believed to be vapor related [Young 
and Golding, 2002]. Nearly all of the small-volume 
releases were estimated to occur at rates < 0.04 gal  
d-1 (liquid equivalent), with a maximum rate of 0.4 
gal d-1; rates well below the current liquid leak 
detection threshold of 2.4 gal d-1 (0.1 gal hr-1). The 
rate estimates, along with the actual type and 
frequency of occurrence remain in doubt, however, 
because of uncertainty in their mass-balance 
approach and the lack of field validation. In the case 
of small-volume liquid releases, the volume is not of 
sufficient magnitude for the liquid product to contact 
groundwater. Rather, individual constituents of the 
liquid product migrate to groundwater by diffusion 
and advection.  Resulting effects on groundwater are 
a function of the magnitude (volume and rate) of 
product released, its composition, the physiochemical 
properties of the constituents that compose the 
released gasoline, and the prevailing hydrogeologic 
conditions of the vadose zone into which the product 
is released.   

Figure 1. Model geometry and boundary 
conditions for simulation of a continuous 
small-volume release of EtOH-blended fuel in 
the vadose zone.

What approach was used in this study? 
TBA transport in the vadose zone was simulated 
using the computer code R-UNSAT, developed and 
documented by the U.S. Geological Survey [Lahvis 
and Baehr, 1997]. The transport model accounts for 
diffusion, groundwater infiltration, adsorption, and 
biodegradation processes, variable soil-moisture 
content, and equilibrium partitioning among the 
solid, aqueous, and gaseous phases.  Gaseous-phase 
advection is not considered because this process is 
assumed to be negligible for compounds, such as 
TBA, which strongly partition to the aqueous phase.  

The model was applied to simulate two-dimensional 
(axisymmetric) steady-state transport in a variably 
saturated vadose zone, assuming a variable 
(hydrostatic) moisture condition based on soil 
properties defined by van Genuchten [1980]. The 
model geometry and boundary conditions for this 
application are illustrated in Figure 1.  
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In order to determine an upper-bound concentration 
of TBA in groundwater, very conservative source and 
transport assumptions were applied. In particular, the 
model scenario involved:  

• a small-volume release rate of 120 g d-1 (0.04 gal  
d-1 liquid gasoline equivalent) representative of the 
upper-bound rate for the vast majority of small-
volume releases occurring at UST sites [Young and 
Golding, 2002]; 

• a source consisting of 10 percent EtOH and 0.6 
percent MTBE; 

• complete and instantaneous transformation of the 
MTBE to TBA by microbial degradation, resulting 
in a constant concentration of 0.6 percent TBA at 
the source; 

• no biodegradation of TBA in the vadose zone; 
• a sand vadose zone; 
• a continuous release source located just above (30 

cm) the water table, representative of the top of the 
capillary zone;  

• a zero concentration boundary at the water 
boundary table; and 

• a groundwater infiltration rate of 20 cm yr-1. 

Transport modeling provides estimates of the mass 
flux (or mass-loading rate) of TBA to groundwater. 
In the absence of biodegradation, the mass-loading 
rate to groundwater is proportional to the rate of 
groundwater infiltration and rate of diffusion across 
the water table (which, in turn, is proportional to the 
concentration gradient across the water table). The 
concentration at the water table is directly 
proportional to the rate at which TBA enters 
groundwater (i.e., the mass-loading rate) and the rate 
at which TBA migrates laterally (from the source 
area) in groundwater. The water-table concentration 
can be related to a groundwater concentration by 
assuming a dilution attenuation factor that accounts 
for mixing and dispersion in the saturated zone 
[Environmental Protection Agency, 1996].  

What were the results? 
Simulation of the small-volume release resulted in 
the steady-state distribution of TBA illustrated in 
Figure 2. Because there is no mass loss of TBA to the 
atmosphere or as a result of biodegradation in the 
vadose zone, the mass-loading rate of TBA to 
groundwater (0.71 g d-1) is equivalent to the release 
rate from the source. TBA concentrations at the water 
table in the source zone corresponding to this mass-
loading rate range from approximately 10 to 1,000 
ppb depending on the groundwater flow rate (see 
Figure 3). Actual concentrations of TBA observed in 
monitoring wells are likely to be substantially less 
than these values depending on the extent of dilution 
attenuation in the saturated zone. For example, 
concentrations of TBA in groundwater would be 
more than an order of magnitude less than these 

values assuming a dilution attenuation factor based 
on reasonable approximations of source size (50 ft), 
groundwater flow (0.1 ft d-1), and dissolved plume 
thickness (10 ft). As noted previously, the 
assumptions used to define the amount of TBA 
produced from a small-volume release, were also 
particularly conservative. 

Based on the mass-loading rate of TBA to 
groundwater predicted by transport modeling (0.71 g 
d-1), dissolved-phase concentrations are expected to 
be below levels of detection (approximately 5µg/L) 
in the vast majority of domestic or public supply 
wells if typical effects of mixing and dilution are 
assumed.  For example, the maximum potential 
concentration of TBA achievable in a supply well 
would be approximately 5µg/L assuming well 
discharge at a rate > 25 gal min-1, complete plume 
capture by the well, constant and steady state flow 
(rate and direction), and no mass loss between the 
source and the well.  

What key parameters affect transport of 
TBA to groundwater? 
TBA partitions strongly to the aqueous phase as 
reflected by its extremely low Henry’s constant 
(0.00048). Aqueous-phase transport processes (i.e., 
aqueous-phase diffusion and aqueous-phase 
advection caused by infiltrating recharge water) will 
thus govern TBA transport in the vadose zone. 
Because aqueous-phase transport processes 
(diffusion, in particular) are slow relative to vapor-
phase transport processes, transport of TBA to 
groundwater will be slow relative to benzene, 
toluene, ethylbenzene, and xylenes (BTEX) and other 
more volatile gasoline constituents that favor 
transport in the vapor phase, especially when 
groundwater infiltration is limited. Further, because 
aqueous-phase diffusion is slow relative to aqueous-
phase advection, small differences in the groundwater 
infiltration rate could cause significant differences in 
both concentrations of TBA in groundwater and 
travel times of TBA to groundwater (especially for 
sources located well above the water table). TBA 
transport to groundwater may also be sensitive to 
aerobic biodegradation in the vadose zone [Bradley et 
al., 2002] although this pathway was not evaluated in 
this investigation.  In summary, the key processes to 
consider in evaluating potential impacts of TBA on 
groundwater are depth to groundwater, groundwater 
infiltration, and biodegradation.  
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Figure 3. Dissolved phase concentrations of 
TBA in the source zone at the water table as a 
function of groundwater seepage velocity. 
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Figure 2. Steady-state distribution of TBA in 
sand assuming an infiltration rate of 20 cm yr-1 
and no biodegradation. 
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